

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATIC	cs		9709/12
Paper 1 Pure M	lathematics 1		May/June 2022
You must answ	er on the guestion paper.	AME	1 hour 50 minutes

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.

You will need: List of formulae (MF19)

- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

The coefficient of x^4 in the expansion of $(3+x)^5$ is equal to the coefficient of x^2 in $\left(2x + \frac{a}{x}\right)^6$.	the expansion of
Find the value of the positive constant a .	[4]
	AHEAD

Find the sum to infinity.	[4]
	HEA

Find t	the equation of	f the curve.			
••••••				 	
			•••••	 	
			•••••	 	
•••••	••••••	••••••	•	 •••••	
•••••	•••••	••••••	•••••	 •••••	
•••••		••••••	•••••	 	
•••••			••••	 	
			•••••	 	
			•••••	 	
			••••	 	

(a)	Find the value of the constant k .	
		•••••
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)	Find the sum of the first 30 terms of the progression.	
(b)		

	e equation of a curve is $y = 4x^2 - kx + \frac{1}{2}k^2$ and the equation of a line is $y = x - a$, where k and a are stants.
(a)	Given that the curve and the line intersect at the points with x-coordinates 0 and $\frac{3}{4}$, find the values of k and a . [4]
	AHEAD

•••••					•••••						•••••
		•••••		••••••	•••••						
•••••					•••••						•••••
					•••••						
•••••	••••••	••••••	••••••	•••••••	••••••	•	••••••	••••••	••••••		••••••
•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••	•	•••••
•••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	•	••••••
•••••		•••••	•••••		•••••		•••••				•••••
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••		
					•••••			••••••	•••••		•••••
•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		•••••
•••••											
•••••	•••••				•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
					•••••						

The diagram shows the curve with equation $y = 5x^{\frac{1}{2}}$ and the line with equation $y = 2x + 2$	
Find the exact area of the shaded region which is bounded by the line and the curve.	[5]
	•••••
	•••••
	••••••
	•••••
	AHEAD

LHEA

The diagram shows a sector OBAC of a circle with centre O and radius 10 cm. The point P lies on OC and BP is perpendicular to OC. Angle $AOC = \frac{1}{6}\pi$ and the length of the arc AB is 2 cm.

(a)	Find the angle <i>BOC</i> .	[2]
		PHEAD

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

The equation of a circle is $x^2 + y^2 + ax + by - 12 = 0$. The points A(1, 1) and B(2, -6) lie on the

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

p)	x + qy = k, where p , q and k are integers.	
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		•••••
•••		
•••		
•••		•••••
•••		H

			<u>1</u>	1
9	The equation of a	curve is $y = 3x +$	$1 - 4(3x + 1)^{\frac{1}{2}}$ for $x > 1$	$-\frac{1}{3}$.

(a)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[3]
		· • • • • •
		•••••
		.
		,
		· • • • • •
		,
		,
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	AHE	A

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
	NE N

10 Functions f and g are defined as follows:

$$f(x) = \frac{2x+1}{2x-1}$$
 for $x \neq \frac{1}{2}$,

$$g(x) = x^2 + 4 \quad \text{for } x \in \mathbb{R}.$$

(a)

(b)

The diagram shows part of the graph of y = f(x).

State the domain of f^{-1} .	[1]

Find an expression for $f^{-1}(x)$.	[3]

(d)	Explain why $g^{-1}(x)$ cannot be found.	[1]
(e)	Show that $1 + \frac{2}{2x - 1}$ can be expressed as $\frac{2x + 1}{2x - 1}$. Hence find the area of the triang by the tangent to the curve $y = f(x)$ at the point where $x = 1$ and the x - and y -axes.	le enclosed [6]
		•••••
		•••••
		•••••
		•••••
		•••••
		AHEAD

1)	Given that $k = 3$, find the exact solutions of the equation $f(x) = 0$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•	• • • • • • • • • • • • • • • • • • • •
•	•••••
	• • • • • • • • • • • • • • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	
•	• • • • • • • • • • • • • • • • • • • •
•	 •
	 •••••
•	 •
•	
•	 •
•	•••••
•	 •••••
•	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.