

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATIC	cs		9709/32
Paper 3 Pure N	Mathematics 3	AHE	February/March 2023 1 hour 50 minutes
	ver on the question paper. List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

Express y in terms of x .	[3]
	UEA/

2	On an Argand diagram, shade the region whose points represent complex numbers z sa	atisfying
	the inequalities $-\frac{1}{3}\pi \le \arg(z-1-2i) \le \frac{1}{3}\pi$ and Re $z \le 3$.	[3]

')	correct to 3 decimal places. [2]
	JEAD THE AD

Find the v	alues of a and	b.				
••••••	•••••	•••••		••••••	•••••	
		•••••			•••••	
					•••••	
••••••	••••••	••••••	•••••••	••••••••	•••••	•••••••
•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••		•••••	•••••	
•••••		•••••				
			•••••			
••••••	•••••	•••••	•••••	•••••••••	•••••	
			•••••			
•••••	•••••	•••••		••••••	•••••	•••••

4	Solve	the	equ	ation

$\frac{5z}{1+2i} - zz^* + 30 + 10i = 0,$	
giving your answers in the form $x + iy$, where x and y are real.	[5]
, H	EAD

	5	The	parametric	equations	of a	curve	ar
--	---	-----	------------	-----------	------	-------	----

(a)

$$x = te^{2t},$$
 $y = t^2 + t + 3.$

Show that $\frac{dy}{dx} = e^{-2t}$.	[3]
	AHEAD
••••••••••••••••••••••••••••••••••••	

Hence show that the normal to the curve, where $t = -1$, passes through the point $\left(0, 3 - \frac{1}{e^2}\right)$

6 ((a)	Express $5 \sin \theta + 12 \cos \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$.	[3]
			AHEAD

•••	
•••	
•••	
•••	
•••	
•••	
•••	•
•••	
•••	• • • • • • • • • • • • • • • • • • • •
•••	• • • • • • • • • • • • • • • • • • • •
•••	
•••	
•••	
•••	
•••	
	H

7

The diagram shows a circle with centre O and radius r. The angle of the **minor** sector AOB of the circle is x radians. The area of the **major** sector of the circle is 3 times the area of the shaded region.

(a)	Show that $x = \frac{3}{4}\sin x + \frac{1}{2}\pi$.	[4]
		MEAD
		AHEAD

•••••	•••••	•••••	•••••	•••••
••••••	•••••	•••••	•••••	•••••
	•••••			•••••
	•••••	•••••	•••••	•••••
•••••	••••••	•••••	•••••	••••••
		•••••		
Use an iterative form	nula based on the	equation in (a) to o	calculate this root cor	rect to 2 dec
				rect to 2 dec
				rect to 2 dec
Use an iterative for places. Give the res				rect to 2 dec
places. Give the res	ult of each iteratio	n to 4 decimal place		
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	
places. Give the res	ult of each iteratio	n to 4 decimal place	es.	

The diagram shows the curve $y = x^3 \ln x$, for x > 0, and its minimum point M.

(a)	Find the exact coordinates of M .	[4]
		•••••
		•••••
		•••••
		HEAD
		4

(b)	Find the exact area of the shaded region bounded by the curve, the <i>x</i> -axis and the line $x = \frac{1}{2}$. [5]
	AHEAD

9 The variables x and y satisfy the differential e

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3y}\sin^2 2x.$$

It is given that y = 0 when x = 0.

Solve the differential equation and find the value of y when $x = \frac{1}{2}$.	[7]
	•••••
	•••••
	•••••
	HEAD

	. •
	•
	•
	• •
	•
	•
	•
	, .
	•
	•
	F
HEA	4

10	With respect to the o	origin O , the	points A, B, C an	dD have position	vectors given by
10	William respect to the c	$\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \alpha_4 \leq \alpha_5 $	points ri, D, C un	id D Have position	rectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \qquad \overrightarrow{OC} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 5 \\ -6 \\ 11 \end{pmatrix}.$$

) Find the obtuse angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} .	[3
he line l passes through the points A and B .	
Find a vector equation for the line l .	[2
	HEA

		•••••	 		
•••••	•••••	•••••	 		•••••
		•••••	 		
	•••••	••••	 		
••••••	•••••	•••••	 	•••••	••••••
		•••••	 		
	•••••				
		•••••	 		
•••••	•••••	•••••	 		•••••
		•••••	 		

11	Let $f(r)$ –	$5x^2 + x + 11$
11	Let $I(x)$ –	$\frac{5x^2 + x + 11}{(4+x^2)(1+x)}$

••	•••••
• •	••••••
• •	•••••
• •	•••••
• •	 •••••
• •	••••••
• •	•••••
• •	•••••
• •	 •••••
• •	 •••••
• •	 •••••
• •	 •••••
• •	•••••
••	•••••
••	•••••
••	••••••
••	•••••
• •	•••••
••	•••••
• •	••••••
• •	••••••
• •	••••••
• •	

(b)	Hence show that $\int_0^2 f(x) dx = \ln 54 - \frac{1}{8}\pi.$	[5]
		••••
		••••
		•••••
		••••
		•••••
		••••
		••••
		••••
		•••••
		••••
		•••••
		••••
		•••••
		••••
		••••
	AHE	AD

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.