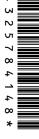


# Cambridge International AS & A Level


| CANDIDATE<br>NAME |                           |                     |                      |
|-------------------|---------------------------|---------------------|----------------------|
| CENTRE<br>NUMBER  |                           | CANDIDATE<br>NUMBER |                      |
| MATHEMATIC        | cs                        |                     | 9709/32              |
| Paper 3 Pure N    | Mathematics 3             | 00                  | ctober/November 2021 |
|                   |                           | AUV                 | 1 hour 50 minutes    |
| You must answ     | er on the question paper. |                     |                      |
| You will need:    | List of formulae (MF19)   |                     |                      |

### INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

#### **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].



## **BLANK PAGE**



| integers. | $x \text{ for which } 3(2^{1-x}) = 7$ | r. Give your | answer in the | $\frac{10 \text{rm}}{\ln b}$ ,          | where $a$ and $b$ are [4] |
|-----------|---------------------------------------|--------------|---------------|-----------------------------------------|---------------------------|
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               | ••••••                                  |                           |
|           |                                       |              |               | ••••••••••••••••••••••••••••••••••••••• |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               | ••••••••••••••••••••••••••••••••••••••• |                           |
|           |                                       |              |               | ••••••••••••••••••••••••••••••••••••••• |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               | ••••••••••••••••••••••••••••••••••••••• |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               | ••••••••••••                            |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         |                           |
| •••••     |                                       | •••••••••••• |               | ••••••                                  |                           |
| •••••     |                                       |              |               |                                         |                           |
|           | ••••••                                | ••••••       |               | ••••••••••                              |                           |
|           |                                       | •••••        |               | ••••••••••                              |                           |
|           |                                       |              |               | ••••••••••••                            |                           |
|           |                                       |              |               |                                         |                           |
|           |                                       |              |               |                                         | HEAD                      |

| ••••••    |
|-----------|
|           |
|           |
|           |
| <br>      |
|           |
| •••••     |
| <br>      |
|           |
| ••••••    |
| •••••     |
|           |
| •••••     |
| <br>      |
|           |
| •••••     |
| <br>••••• |
| <br>••••• |
|           |
|           |
|           |
|           |
| •••••     |
| AHEA      |



|            | $(u+w)^* = u^* + w^*.$                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
| <b>)</b> ) | Solve the equation $(z + 2 + i)^* + (2 + i)z = 0$ , giving your answer in the form $x + iy$ where $x$ and $y$ are real. |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            |                                                                                                                         |
|            | AHEA                                                                                                                    |

| (      | $\frac{x^2 - 13x + 13}{(x - 1)(x - 3)}$ in |        |        |        |         |        |        |
|--------|--------------------------------------------|--------|--------|--------|---------|--------|--------|
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
| •••••  | •••••                                      | •••••  | •••••• | •••••  | ••••••  | •••••  | •••••• |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
| •••••• | •••••                                      | •••••• | •••••• | •••••• | ••••••• | •••••• | •••••• |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        | •••••  |         |        | •••••  |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         | •••••  | •••••  |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        | •••••  |        |         |        | •••••  |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
|        | •••••                                      |        | •••••  | •••••  |         |        | •••••  |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
| •••••  | •••••                                      | •••••  | •••••• | •••••  |         | •••••  | •••••• |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
| •••••  | •••••                                      | •••••  | •••••• | •••••  | ••••••  | •••••  | •••••  |
|        |                                            |        |        |        |         |        |        |
|        |                                            |        |        |        |         |        |        |
| •••••  | •••••                                      | •••••  | •••••  | •••••  |         | •••••  | •••••• |
|        |                                            |        |        |        |         |        |        |



| (a)        | satisfying the inequalities $ z - 3 - 2i  \le 1$ and Im $z \ge 2$ .                                | [4 |
|------------|----------------------------------------------------------------------------------------------------|----|
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
|            |                                                                                                    |    |
| <b>(b)</b> | Find the greatest value of $\arg z$ for points in the shaded region, giving your answer in degrees |    |
| <b>(b)</b> |                                                                                                    | [3 |
| (b)        |                                                                                                    | [3 |

|   | $\frac{1}{2}(\sin 5x + \sin x) \equiv \sin 3x \cos 2x.$ |
|---|---------------------------------------------------------|
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
|   |                                                         |
| H |                                                         |

| ••••• |                                         |            | •••••  |        | • • • • • • • • • • • • • • • • • • • • | ••••• | <br>  |
|-------|-----------------------------------------|------------|--------|--------|-----------------------------------------|-------|-------|
| ••••• |                                         |            | •••••  |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       |       |
| ••••• | • • • • • • • • • • • • • • • • • • • • | •••••••••• | •••••• | •••••  | ••••••                                  | ••••• | <br>  |
| ••••• |                                         |            | •••••  |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         | ••••• | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       |       |
|       |                                         |            |        |        | ••••••                                  |       |       |
| ••••• |                                         |            | •••••  | •••••  | ••••••                                  | ••••• | <br>  |
| ••••• |                                         |            |        |        | •••••                                   | ••••• | <br>  |
|       |                                         |            |        |        |                                         | ••••• | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       |       |
| ••••• |                                         | •••••••••  | •••••• | •••••• | •••••                                   | ••••• | <br>, |
| ••••• |                                         |            | •••••  | •••••  | ••••••                                  | ••••• | <br>  |
|       |                                         |            |        |        |                                         | ••••• | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       |       |
| ••••• |                                         | •••••••    | •••••  | •••••• | ••••••                                  | ••••• | <br>  |
| ••••• |                                         |            | •••••• | •••••  |                                         | ••••• | <br>  |
| ••••• |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       | <br>  |
|       |                                         |            |        |        |                                         |       |       |
| ••••• |                                         |            | •••••• |        |                                         |       | <br>  |

|  | 7 | The variables x and | v satisfy the | differential | equation |
|--|---|---------------------|---------------|--------------|----------|
|--|---|---------------------|---------------|--------------|----------|

and it is given that y = 1 when x = 0.

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

| Solve the differential equation, obtaining an expression for $y$ in terms of $x$ . | [7    |
|------------------------------------------------------------------------------------|-------|
|                                                                                    | ••••• |

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
| <br> | <br> | <br> |
| <br> |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
| <br> | <br> | <br> |



|     | •• |
|-----|----|
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     | •• |
|     |    |
| HEA | L  |

|   | $\cos^4\theta + \sin^4\theta \equiv 1 - \frac{1}{2}\sin^2 2\theta.$ |
|---|---------------------------------------------------------------------|
|   |                                                                     |
|   |                                                                     |
| • |                                                                     |
| • |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
| • |                                                                     |
| • |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |
|   |                                                                     |



| <b>(b)</b> Hence solve the equation |
|-------------------------------------|
|-------------------------------------|

| $\cos^4\theta + \sin^4\theta = \frac{5}{9}$ | <u>.</u> |
|---------------------------------------------|----------|
|---------------------------------------------|----------|

| for $0^{\circ} < \theta < 180^{\circ}$ . | [4]   |
|------------------------------------------|-------|
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          |       |
|                                          | AHEAD |



|   |     | 14                                                         |
|---|-----|------------------------------------------------------------|
| 9 | The | equation of a curve is $ye^{2x} - y^2e^x = 2$ .            |
|   | (a) | Show that $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$ . |
|   |     |                                                            |
|   |     |                                                            |
|   |     |                                                            |
|   |     |                                                            |
|   |     |                                                            |

| <br>     |
|----------|
| <br>     |
| <br>     |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
| <br>     |
| <br>AHEA |

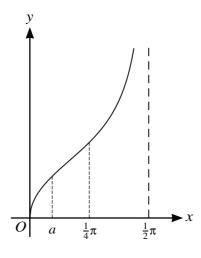


[4]

| • |  |
|---|--|
|   |  |
| • |  |
|   |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
|   |  |
|   |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
| • |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| • |  |
|   |  |



| 10 | With $\overrightarrow{OB}$ | th respect to the origin $O$ , the position vectors of the points $A$ and $B$ are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $A = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ . | d  |
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | (a)                        | Find a vector equation for the line $l$ through $A$ and $B$ . [3]                                                                                                                                                   | ]  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     |    |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     |    |
|    |                            |                                                                                                                                                                                                                     | •  |
|    | (b)                        | The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$ .                                                                                                                               |    |
|    |                            | Find the position vector of $C$ .                                                                                                                                                                                   | .] |
|    |                            |                                                                                                                                                                                                                     |    |
|    |                            |                                                                                                                                                                                                                     |    |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     | •  |
|    |                            |                                                                                                                                                                                                                     |    |
|    |                            | AHEA                                                                                                                                                                                                                | D  |


| <br> |        |
|------|--------|
|      |        |
| <br> | •••••  |
| <br> |        |
|      |        |
|      |        |
|      |        |
|      | •••••  |
| <br> |        |
|      |        |
| <br> | •••••  |
| <br> |        |
|      |        |
| <br> |        |
|      |        |
| <br> | •••••  |
| <br> |        |
|      |        |
| <br> | •••••  |
|      |        |
|      |        |
| <br> |        |
|      |        |
| <br> | •••••  |
| <br> |        |
|      |        |
| <br> | •••••  |
|      |        |
|      |        |
| <br> |        |
|      |        |
|      | •••••  |
| <br> |        |
|      |        |
|      |        |
| <br> |        |
| <br> | •••••• |
| <br> |        |

11 The equation of a curve is  $y = \sqrt{\tan x}$ , for  $0 \le x < \frac{1}{2}\pi$ .

(a)

| Express $\frac{dy}{dx}$ in terms of $\tan x$ , and verify that $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$ . | [4] |
|----------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |
|                                                                                                                |     |

The value of  $\frac{dy}{dx}$  is also 1 at another point on the curve where x = a, as shown in the diagram.



| <b>(b)</b> | Show that $t^3 + t^2 + 3t - 1 = 0$ , where $t = \tan a$ . | [4]    |
|------------|-----------------------------------------------------------|--------|
|            |                                                           | •••••  |
|            |                                                           |        |
|            |                                                           |        |
|            |                                                           | 117117 |
|            | AHE                                                       | AL     |

| (c) | Use the iterative formula                                                                            |
|-----|------------------------------------------------------------------------------------------------------|
|     | $a_{n+1} = \tan^{-1} \left( \frac{1}{3} (1 - \tan^2 a_n - \tan^3 a_n) \right)$                       |
|     | to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places. |
|     | [3]                                                                                                  |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |



## **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |
|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.