

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATI	cs		9709/12
Paper 1 Pure N	Mathematics 1	AH	tober/November 2023 1 hour 50 minutes
	ver on the question paper.		
You will need:	List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the guestion.

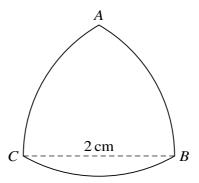
INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

The totalThe numb

This document has 20 pages.

Find the value of the constant a .	[4


2	Find the exact solution of the e	quation
		$\frac{1}{5}\pi + 1$

$\frac{1}{6}\pi + \tan^-$	$^{1}(4x) = -\cos^{-1}(\frac{1}{2}\sqrt{3}).$	[2]
		•••••••••
		••••••
		••••••••••
		••••••
		•••••
		•••••
		MEAD
		Arisa

3

The	equation of a curve is such that $\frac{dy}{dx} = \frac{1}{2}x + \frac{72}{x^4}$. The curve passes through the point $P(2, 8)$.
(a)	Find the equation of the normal to the curve at P . [2]
(b)	Find the equation of the curve. [4]
	TEAC .
	L. H. A.

The diagram shows the shape of a coin. The three arcs AB, BC and CA are parts of circles with centres C, A and B respectively. ABC is an equilateral triangle with sides of length 2 cm.

(a)	Find the perimeter of the coin.	[2]
(b)	Find the area of the face ABC of the coin, giving the answer in terms of π and $\sqrt{3}$.	[4]
		HEAD

5	The whe	e first, second and third terms of a geometric progression are $\sin \theta$, $\cos \theta$ and $2 - \sin \theta$ respectively, here θ radians is an acute angle.						
	(a)	Find the value of θ . [3]						
		TIEAD.						
		All						

tne form	s value of θ , $\frac{b}{\sqrt{c}-1}$, where	e b and c are	e integers to	be found.			
	•••••			••••	•••••		
		••••••	•••••			••••••	
•••••	•••••		•••••	•••••	•••••	•••••	
•••••	•••••••	••••••	••••••	••••••	••••••	•••••	
•••••	•••••		••••••	•••••		••••••	
•••••	•••••		•••••	•••••	•••••	•••••	
•••••	••••••	••••••	••••••			•••••	
	•••••			•••••			
	•••••••	••••••••••	••••••	•••••	•••••••••	••••••	
•••••							
•••••	•••••		•••••	•••••	•••••	•••••	
•••••	••••••	•••••••	•••••		••••••	••••••	
•••••							

(a)	Find the coordinates of the minimum point of the curve.	[2
		•••••
	curve is stretched by a factor of 2 parallel to the y-axis and then translated by $\binom{4}{1}$. Find the coordinates of the minimum point of the transformed curve.	
		[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2
	Find the coordinates of the minimum point of the transformed curve.	[2

a, b and c are	tion of the transfo integers to be fo	und.		,	[4
•••••				 	
•••••				 	••••••
				 	••••••
		•••••	•••••	 	••••••
			•••••	 	••••••
			•••••	 	••••••
		•••••	•••••	 	•••••••
		•••••	•••••	 	•••••••
		•••••	•••••	 	••••••
			•••••	 	••••••
		•••••	•••••	 	••••••
		•••••	•••••	 	••••••
			•••••	 	••••••
				 	••••••
				 	••••••
				 	AHEA

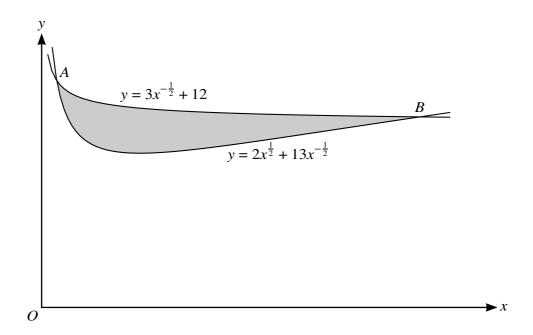
7	(a)	Verify the identity $(2x - 1)(4x^2 + 2x - 1) \equiv 8x^3 - 4x + 1$.	[1]
			•••••
			•••••
			•••••
			•••••
	(b)	Prove the identity $\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} \equiv \frac{1}{1 - 2\cos^2 \theta}$.	[3]
			•••••
			•••••
			•••••
			•••••
			•••••
			HEAD

	11	
(c)	Using the results of (a) and (b), solve the equation	
	$\frac{\tan^2\theta + 1}{\tan^2\theta - 1} = 4\cos\theta,$	
	for $0^{\circ} \le \theta \le 180^{\circ}$.	[[
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••

8 Functions f and g are defined by

$$f(x) = (x+a)^2 - a \text{ for } x \le -a,$$

$$g(x) = 2x - 1 \text{ for } x \in \mathbb{R},$$


where a is a positive constant.

a)	Find	d an expression for $f^{-1}(x)$.	[3]
	•••••		
b)	(i)	State the domain of the function f^{-1} .	[1]
	(ii)	State the range of the function f^{-1} .	[1]
			AHEAD

• • • • • • • • • • • • • • • • • • • •		•••••						• • • • • • • • • • • • • • • • • • • •	
••••••		••••••	••••••	••••••	••••••	••••••		••••••	
•••••	••••••	•••••	•••••	••••••	••••••	•••••		•••••	
••••••		•••••		•••••					
		•••••							
•••••••		••••••	••••••	••••••	••••••	••••••		••••••	
••••••	••••••	•••••	•••••	••••••	••••••	•••••		•••••	
•••••	•••••	•••••						•••••	
•••••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••••	••••••	•••••••••••
		•••••	•••••	•••••	•••••	•••••		•••••	•••••••••••
•				•••••					
••••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	
	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••

9

The diagram shows curves with equations $y = 2x^{\frac{1}{2}} + 13x^{-\frac{1}{2}}$ and $y = 3x^{-\frac{1}{2}} + 12$. The curves intersect at points *A* and *B*.

Find the coordinates of A and B.	[4]
	HEAD
	A

)	Hence find the area of the shaded region.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		AHEAD

(a)	Find the <i>x</i> -coordinates of the stationary points of the curve and determine their nature. [6]
	AHEA

(b)	State the set of values for which the function f is increasing. [1]
	WEAD

11 The coordinates of points A, B and C are (6, 4), (p, 7) and (14, 18) respectively, where p is a constant.

)	Given that $p < 10$, find the value of p .
	AHE

A circle passes through the points A, B and C.

•••••		•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
						•••••	
•••••	••••••	••••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••			•••••	
						• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••		•••••	•••••	
Find the equation d , e and d	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ <i>ey</i> + <i>f</i>
Find the eq where d , e	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ ey + f
Find the eq where d , e	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form <i>dx</i> -	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ ey + f
Find the eq	uation of the	e tangent to t	he circle at	C, giving th	e answer in	the form dx -	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	the circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f
Find the eq	uation of the and f are int	e tangent to t	he circle at	C, giving th	e answer in	the form dx	+ ey + f

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.