

Cambridge International AS & A Level

CANDIDATE NAME								
CENTRE NUMBER				CANDIDATE NUMBER				
MATHEMATIC	cs						970	09/3
Paper 3 Pure M	lathematics 3					May/	June	202
			\mathbf{A}	4	11	hour 5	50 mir	nute
You must answ	er on the que	stion paper						
You will need:	List of formul	ae (MF19)						

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets []

This document has **20** pages. Any blank pages are indicated.

© UCLES 2021

1

Solve the inequality $ 2x - 1 < 3 x + 1 $.	[4]

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+1-i| \le 1$ and $\arg(z-1) \le \frac{3}{4}\pi$. [4]

(a)	Explain why the graph of y against $\ln x$ is a straight line and state the exact value of the gradie of the line.
T4 in	
IT 10	
	given that the line intersects the y-axis at the point where $y = 1.3$.
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.
	Calculate the value of A, giving your answer correct to 2 decimal places.

4

Using integration by parts, find the exact	value of $\int_0^2 \tan^{-1} \left(\frac{1}{2}x\right) dx.$	[5]

The complex number u is given by $u = 10 - 4\sqrt{6}i$.	
Find the two square roots of u , giving your answers in the form $a + ib$, where a and b are real an exact.	
	· • •
	· • •
	· • •
	· · ·
	•••
	•••
	· • •
	•••

)	(a)	Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$.	[3]
			•••••
	(b)	Hence show that $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	[4]
			•••••

Turn over Page Papa Cambridge

7

y setting up and solving a differential equation, find the equation of the curve, expressing y in x.	[7
	•••••
	•••••
	••••••
	••••••
	••••••
	••••••
	••••••
	•••••
	••••••
	••••••
	•••••
	•••••

 •••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••

	oordinates of the appropriate.	e stationary p	points of the c	urve. Giv	e your answe	ers correct to	3 decimal [8]
					••••••	•••••	•••••
•••••		•••••					
						•••••	•••••
					•••••	•••••	•••••
		••••					

0	Let $f(r)$ =	$14 - 3x + 2x^2$
,	Let $I(x)$ –	$\frac{14 - 3x + 2x^2}{(2+x)(3+x^2)}.$

(a)	Express $f(x)$ in partial fractions.	[5]

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

(a)	Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x = 0.9(2 - \cos x) \sin x$. [3]
(b)	Verify by calculation that x lies between 0.5 and 0.7. [2]

(c)	Show that if a sequence of values in the interval $0 < x < \frac{1}{2}\pi$ given by the iterative formula				
	$x_{n+1} = \cos^{-1}\left(2 - \frac{x_n}{0.9\sin x_n}\right)$				
	converges, then it converges to the root of the equation in part (a). [2]				
(d)					
	Use this iterative formula to determine <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]				

Show that $OA = OB$ and use a scalar product to calculate angle AOB in degrees.

	Find the possible position vectors of P .	[6
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Additional Page

must be clearly shown.						

Papa Cambridge

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

