Cambridge International AS & A Level | CANDIDATE
NAME | | | |-------------------|---------------------|--| | CENTRE
NUMBER | CANDIDATE
NUMBER | | **CHEMISTRY** 9701/52 Paper 5 Planning, Analysis and Evaluation October/November 2022 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### INSTRUCTIONS - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each guestion in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### INFORMATION - The total mark for this paper is 30. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. - Important values, constants and standards are printed in the question paper. 1 Eggshells contain a high percentage by mass of calcium carbonate, CaCO₃. A student wants to find out what percentage of an eggshell is calcium carbonate and uses the following method. This method uses a known excess of acid to dissolve the eggshell. The amount of unreacted acid is then determined by titration with an alkali. Assume the acid only reacts with the $CaCO_3$ in the eggshell. - **step 1** Wash an empty eggshell with distilled water. - **step 2** Warm the eggshell in an oven for a few minutes until dry. - **step 3** Grind the eggshell into a powder. - **step 4** Weigh approximately 2 g of the eggshell powder into a conical flask using a balance which measures to three decimal places. - **step 5** Add 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid to the conical flask. - **step 6** Loosely cover the conical flask and leave for two days. - **step 7** Filter the contents of the conical flask, with any rinsings, into a 250.0 cm³ volumetric flask and top-up to the mark using distilled water. - **step 8** Transfer 25.00 cm³ of the solution prepared in **step 7** into a conical flask, add a few drops of thymol blue indicator and titrate against 1.00 mol dm⁻³ sodium hydroxide using a 50 cm³ burette. The calcium carbonate in the eggshell reacts with the excess hydrochloric acid as follows. $$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$ The excess acid reacts with the sodium hydroxide solution as follows. $$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H2O(l)$$ | (a) (i) | Suggest how the student could confirm the eggshell is completely dry in step 2. | |---------|---| | | | | | [1] | | (ii) | State why the eggshell is made into a powder in step 3 before making up the solution. Explain your answer. | | | | | | [1] | | (iii) | Suggest why the solution is left for two days in step 6 before being used. | | | | | | TE (I) | **(b)** The student uses exactly 2.136g of powdered eggshell and obtains the results shown in Table 1.1. Table 1.1 | titration number | rough | 1 | 2 | 3 | |---|-------|-------|-------|-------| | final burette reading/cm ³ | 16.55 | 32.85 | 16.10 | 32.30 | | initial burette reading/cm ³ | 0.00 | 16.55 | 0.10 | 16.10 | | titre/cm³ | | | | | | mean titre = |
cm ³ | |--------------|---------------------| | | [2] | | (ii) | Calculate the amount, in mol, of unreacted HCl(aq) in the solution prepared in step 7 | |------|---| | | Show your working. | | (iii) | Calculate the amount, in m | nol, of CaCO ₃ that rea | acts with the excess | of acid. Use your | |-------|------------------------------|------------------------------------|------------------------------------|--------------------| | | answer to calculate the perc | entage by mass of Ca | CO ₃ in the eggshell. S | show your working. | percentage by mass of $$CaCO_3$$ = % [3] | (c) | Name a suitable piece of apparatus which could be used to transfer $25.00\mathrm{cm^3}$ of solution in step 8 . | |-----|--| | | [1] | | (d) | In step 4 , a conical flask is weighed using a balance accurate to three decimal places and the mass recorded. The eggshell is placed in the conical flask and the mass increases by 2.136 g. | | | Calculate the percentage error in measuring the mass of this eggshell. Show your working. | | | | | | | | | percentage error = % [1] | | (e) | State the effect on the percentage by mass if the eggshell is not completely dried in step 2 . Explain your answer. | | | | | | [1] | | (f) | The student repeats the method using the same apparatus, but decides to use $0.100\mathrm{moldm^{-3}}$ NaOH(aq) to reduce the risk of corrosion or damage to eyes. | | | Explain how this introduces a weakness to the experimental procedure. | | | | | | | | | [1] | | | [Total: 14] | STAP STAP AND WHEAD WAY Question 2 starts on the next page. 2 It is possible to measure the rate at which potassium manganate(VII), $KMnO_4(aq)$, $M_r = 158$, diffuses through a permeable gel using the following method. Fig. 2.1 - **step 1** A petri dish is prepared with a permeable gel. - **step 2** A hole of diameter 0.5 cm is cut in the centre of the permeable gel. - **step 3** A sample of KMnO₄(aq) is placed into the hole and at the same time a stopwatch is started. - **step 4** After 3 minutes the diameter of the coloured spot is measured and recorded. - **step 5** The diameter is measured every 3 minutes until there are three successive equal measurements. A student obtained the results shown in Table 2.1. Table 2.1 | time
/minute | diameter of the coloured spot/cm | diameter increase of the coloured spot/cm | |-----------------|----------------------------------|---| | 0 | 0.5 | 0.0 | | 3 | 1.1 | 0.6 | | 6 | 1.7 | 1.2 | | 9 | 2.3 | 1.8 | | 12 | 2.7 | 2.2 | | 15 | 3.1 | 2.6 | | 18 | 3.2 | 2.7 | | 21 | 3.7 | 3.2 | | 24 | 3.9 | 3.4 | | 27 | 4.0 | 3.5 | | 30 | 4.1 | 3.6 | | 33 | 4.1 | 3.6 | | 36 | 4.1 | 3.6 | (a) Plot a graph on the grid to show the relationship between diameter increase of the coloured spot and time. Use a cross (x) to plot each data point. Draw a line of best fit. | (1) | On the graph, choice the point which you believe to be the most anomalous. | L'. | |------|--|-----| | (ii) | Suggest a possible explanation for this anomaly. | | | | | | | | | | | | | [1 | | (c) | Sta | w a suitable tangent to the line at time = 15 minutes. Calculate the gradient of your tangent. te both sets of coordinates used in your calculation. The stated coordinates must be from r tangent. Give the gradient to three significant figures. | |--------------|---------------|---| | | coo | rdinates 1 coordinates 2 | | | grad | dient = cm minute ⁻¹ [3] | | (d) | | ect appropriate data from Table 2.1 and calculate the average rate of diffusion of KMnO $_4$ (aq) m minute $^{-1}$. | | | | average rate of diffusion of KMnO ₄ = cm minute ⁻¹ [1] | | (e) | lder | ntify the independent variable in this experiment. | | | | [1] | | (f) | Sug | gest how the experiment could be made to be more reliable. | | | | [1] | | (g) | $M_{\rm r}$ = | other compound of potassium which is coloured is potassium dichromate(VI), $K_2Cr_2O_7$, = 294. This compound is corrosive when aqueous. It is possible to use the method described ier to determine the rate of diffusion of $K_2Cr_2O_7$ (aq). | | | (i) | Predict how the graph obtained for $K_2Cr_2O_7(aq)$ would differ from that obtained for $KMnO_4(aq)$. Explain your answer. | | | | | | | | [2] | | | (ii) | Apart from temperature, state one variable which must be controlled when comparing the rate of diffusion of $\rm K_2Cr_2O_7(aq)$ and $\rm KMnO_4(aq)$. | | | | [1] | | h) (i) | Other than wearing eye protection, state ${\bf one}$ safety precaution the student should take if they were to use potassium dichromate(VI). | |--------|--| | | [1] | | (ii) | Another student suggests that to compare the rates of diffusion between $K_2Cr_2O_7$ and $KMnO_4$ it would be easier to place solid crystals of each of these compounds into the holes in two petri dishes of permeable gel. | | | Suggest two practical problems that this would cause. | | | 1 | | | | | | 2 | | | | | | [2] | [Total: 16] ### **BLANK PAGE** 11 ## Important values, constants and standards | molar gas constant | $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$ | |---------------------------------|---| | Faraday constant | $F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$ | | Avogadro constant | $L = 6.022 \times 10^{23} \mathrm{mol^{-1}}$ | | electronic charge | $e = -1.60 \times 10^{-19} \mathrm{C}$ | | molar volume of gas | $V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K)
$V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions | | ionic product of water | $K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$ | | specific heat capacity of water | $c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$ | The Periodic Table of Elements | | 18 | ² | helium
4.0 | 10 | Ne | neon
20.2 | 18 | Ā | argon
39.9 | 36 | 궃 | krypton
83.8 | 25 | Xe | xenon
131.3 | 98 | 찜 | radon | 118 | Og | oganesson
- | | |-------|----|--------------|-----------------|---------------|------------------------------|------------------|----|----|--------------------|----|------------------|-------------------|----|-----------------|--------------------|-------|-------------------|-------------------|--------|--------------|--------------------|--| | | 17 | | | 6 | ш | fluorine
19.0 | 17 | Cl | chlorine
35.5 | 35 | Ŗ | bromine
79.9 | 53 | Н | iodine
126.9 | 85 | Αŧ | astatine | 117 | <u>s</u> | tennessine
- | | | | 16 | | | 80 | 0 | oxygen
16.0 | 16 | S | sulfur
32.1 | 34 | Se | selenium
79.0 | 52 | <u>a</u> | tellurium
127.6 | 84 | Ъ | polonium
– | 116 | _ | livermorium
- | | | | 15 | | | 7 | z | nitrogen
14.0 | 15 | ۵ | phosphorus
31.0 | 33 | As | arsenic
74.9 | 51 | Sp | antimony
121.8 | 83 | Ξ | bismuth
209.0 | 115 | Mc | moscovium
- | | | | 14 | | | 9 | ပ | carbon
12.0 | 14 | S | silicon
28.1 | 32 | Ge | germanium
72.6 | 20 | Su | tin
118.7 | 82 | Pb | lead
207.2 | 114 | Εl | flerovium
- | | | | 13 | | | 2 | В | boron
10.8 | 13 | Αl | aluminium
27.0 | 31 | Ga | gallium
69.7 | 49 | I | indium
114.8 | 84 | lT | thallium
204.4 | 113 | 된 | nihonium
– | | | | | | | | | | | | 12 | 30 | Zu | zinc
65.4 | 48 | р
О | cadmium
112.4 | 80 | Hg | mercury
200.6 | 112 | S | copernicium
- | | | | | | | | | | | | 7 | 59 | Cn | copper
63.5 | 47 | Ag | silver
107.9 | 62 | Αu | gold
197.0 | 111 | Rg | roentgenium
- | | | Group | - | | | | | | | | 10 | 28 | Z | nickel
58.7 | 46 | Pd | palladium
106.4 | 78 | 귙 | platinum
195.1 | 110 | Ds | darmstadtium
- | | | Gr | | | | 1 | | | | | 6 | 27 | ပိ | cobalt
58.9 | 45 | 格 | rhodium
102.9 | 77 | 'n | iridium
192.2 | 109 | Ĭ | meitnerium
- | | | | | - エ | hydrogen
1.0 | | | | | | œ | 26 | Ьe | iron
55.8 | 4 | Ru | ruthenium
101.1 | 9/ | SO | osmium
190.2 | 108 | ¥ | hassium
- | | | | | Key | | | | | | | 7 | 25 | Mn | manganese
54.9 | 43 | ပ | technetium
- | 75 | Re | rhenium
186.2 | 107 | ВР | bohrium
– | | | | | | | | pol | ass | | | 9 | 24 | ပ် | chromium
52.0 | 42 | Mo | molybdenum
95.9 | 74 | ≥ | tungsten
183.8 | 106 | Sg | seaborgium
- | | | | | | atomic number | atomic symbol | name
relative atomic mass | | | 2 | 23 | > | vanadium
50.9 | 41 | g | niobium
92.9 | 73 | ā | tantalum
180.9 | 105 | o
D | dubnium
- | | | | | | | | | ato | - re | | | 4 | 22 | F | titanium
47.9 | 40 | Z | zirconium
91.2 | 72 | Έ | hafnium
178.5 | 104 | 峜 | rutherfordium
— | | | | | | | | | | | | က | 21 | Sc | scandium
45.0 | 39 | > | yttrium
88.9 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | | 2 | | | 4 | Be | beryllium
9.0 | 12 | Mg | magnesium
24.3 | 20 | Ca | calcium
40.1 | 38 | Š | strontium
87.6 | 56 | Ba | barium
137.3 | 88 | Ra | radium | | | | _ | | | 8 | :- | lithium
6.9 | = | Na | sodium
23.0 | 19 | × | potassium
39.1 | 37 | 8 | rubidium
85.5 | 55 | S | caesium
132.9 | 87 | Ŧ | francium | | | 7.1 | Γn | lutetium
175.0 | 103 | ۲ | lawrencium | ı | | |-----|----|-----------------------|-----|-----------|--------------|-------|--| | 20 | ΥÞ | ytterbium
173.1 | 102 | Š | nobelium | _ | | | 69 | Tn | thulium
168.9 | 101 | Md | mendelevium | - | | | 89 | щ | erbium
167.3 | 100 | Fm | ferminm | 1 | | | 29 | 웃 | holmium
164.9 | 66 | Es | einsteinium | _ | | | 99 | ò | dysprosium
162.5 | 86 | ర | californium | _ | | | 65 | Тр | terbium
158.9 | 26 | 益 | berkelium | _ | | | 49 | В | gadolinium
157.3 | 96 | Cm | curium | - | | | 63 | En | europium
152.0 | 98 | Am | americium | 1 | | | 62 | Sm | samarium
150.4 | 96 | Pn | plutonium | _ | | | 61 | Pm | promethium | 93 | ď | neptunium | - | | | 09 | ΡN | neodymium
144.4 | 92 | \supset | uranium | 238.0 | | | 69 | Ā | praseodymium
140.9 | 91 | Ра | protactinium | 231.0 | | | 58 | Ce | cerium
140.1 | 06 | 드 | thorium | 232.0 | | | 22 | Гa | lanthanum
138.9 | 88 | Ac | actinium | _ | | lanthanoids actinoids To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.