

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER			
MATHEMATICS	3					97	09/22
Paper 2 Pure M	lathematics.	2 (P2)		ARA		May/June	2019
. apo. 2 . a.o	ida ioi ildaloo	- 1 -				may/can	, _0.0
					1 h	our 15 m	inutes
Candidates ans	wer on the C	Question F	Paper.				
Additional Mater	rial s : Lis	st of Form	ulae (MF9)		Λ		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

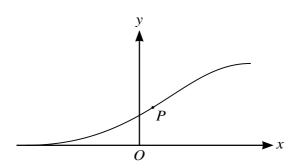
This document consists of **12** printed pages.

1 I II DOIYIIOIIII D(x) IS UCIIIICU D	1	The polynomia	1 p(x)	is	defined	b
---------------------------------------	---	---------------	--------	----	---------	---

$p(x) = 4x^3 + (k+1)x^2 - mx + 3k,$				
where k and m are constants. Given that $(x + 1)$ is a factor of $p(x)$, express m in terms of k . [3]				
TEAD				

		•••••
		••••••
(ii)	Hence solve the equation $ 4 + 2e^{3y} = 3 - 5e^{3y} $, giving the answer correct to 3	significant figu
		•••••

•••••
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • • • • • • • • • • • • • • • •
•••••


(a)	Find the exact value of $\int_0^{\frac{1}{2}\pi} (4\sin 2x + 2\cos^2 x) dx$. Show all necessary working. [5]
(b)	Use the trapezium rule with two intervals to find an approximation to $\int_{2}^{8} \sqrt{\ln(1+x)} dx$. [3]
	ZEA.
	AHEA

5	(i)	Find the quotient and remainder when $2x^3 + x^2 - 8x$ is divided by $(2x + 1)$.	[3]
			HEAD

(ii)	Hence find the exact value of $\int_0^3 \frac{2x^3 + x^2 - 8x}{2x + 1} dx$, giving the answer in the form $\ln(ke^a)$ where
	k and a are constants. [5]
	AHEAD

6

The diagram shows the curve with parametric equations

$$x = 3t - 6e^{-2t}, \quad y = 4t^2e^{-t},$$

for $0 \le t \le 2$. At the point *P* on the curve, the *y*-coordinate is 1.

	Show that the value of t at the point P satisfies the equation $t = \frac{1}{2}e^2$.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Use the iterative formula $t_{n+1} = \frac{1}{2}e^{\frac{1}{2}t_n}$ with $t_1 = 0.7$ to find the value of t at P correct to 3 significants. Give the result of each iteration to 5 significant figures.	
	ngures. Give the result of each hermion to 5 significant figures.	[3]
	inguites. Give the result of each hermion to 5 significant rightes.	
		[3]
		HEAD

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	A

7	(a)	(i)	Express $4 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. [3]
		(ii)	Hence find the smallest positive value of θ satisfying the equation $4 \sin \theta + 4 \cos \theta = 5$. [2]
			AHEAD

(b)	Solve	the	ea	mation
1	D)	SOLVE	uic	СЧ	uation

$4\cot 2x = 5 + \tan x$

for $0 < x < \pi$, showing all necessary working and giving the answers correct to 2 decimal places	
	-
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
- FA	
AREA	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.