

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATI	cs		9709/42
Paper 4 Mecha	anics	Oc	tober/November 2022
		775	1 hour 15 minutes
You must answ	ver on the question paper.		
You will need:	List of formulae (MF19)		

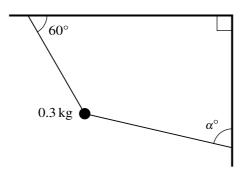
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

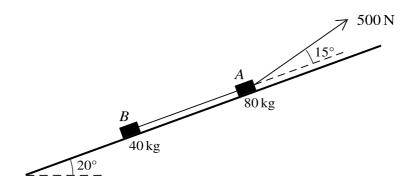
This document has 12 pages.


1

A cyclist is riding a bicycle along a straight horizontal road AB of length 50 m. The cyclist starts

Find the tota	al mass of the	e cyclist an	d bicycle.				
			a eregere.				
	•••••			• • • • • • • • • • • • • • • • • • • •			
•••••						•••••	
••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••
••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	
••••••	••••••	•••••••	•••••	•	•••••	••••••	
				•••••			
				• • • • • • • • • • • • • • • • • • • •			

(a)	Show that the coefficient of friction between the particle and the plane is $\frac{1}{3}\sqrt{3}$.	
		•••
		••••
		••••
		••••
		••••
	••••••••••••••••••••••••••••••••••••	
A fo	orce of magnitude 7.2 N is now applied to P directly up a line of greatest slope of the plane.	
	orce of magnitude 7.2 N is now applied to P directly up a line of greatest slope of the plane. Given that P starts from rest, find the time that it takes for P to move 1 m up the plane.	



A particle of mass $0.3\,\mathrm{kg}$ is held at rest by two light inextensible strings. One string is attached at an angle of 60° to a horizontal ceiling. The other string is attached at an angle α° to a vertical wall (see diagram). The tension in the string attached to the ceiling is $4\,\mathrm{N}$.

Find the tension in the string which is attached to the wall and find the value of α .	[6]
	•••••
	•••••
	•••••
	•••••
	HEAD

orc f 0	$0.8\mathrm{ms^{-2}}$.	
a)	Find the power of the car's engine at the point A .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
	e car continues to work with this power as it travels from A to B . The car takes 53 seconds t	to trave
on	e car continues to work with this power as it travels from A to B . The car takes 53 seconds to A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	
on	m A to B and the speed of the car at B is $32 \mathrm{m s}^{-1}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
on	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]
ron	m A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	[3]

A block A of mass $80\,\mathrm{kg}$ is connected by a light, inextensible rope to a block B of mass $40\,\mathrm{kg}$. The rope joining the two blocks is taut and is parallel to a line of greatest slope of a plane which is inclined at an angle of 20° to the horizontal. A force of magnitude $500\,\mathrm{N}$ inclined at an angle of 15° above the same line of greatest slope acts on A (see diagram). The blocks move up the plane and there is a resistance force of $50\,\mathrm{N}$ on B, but no resistance force on A.

,	Find the acceleration of the blocks and the tension in the rope.	
		ЦE
		AHE

		•••
		•••
(b)	Find the time that it takes for the blocks to reach a speed of $1.2 \mathrm{ms^{-1}}$ from rest.	[2]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
	AHEA	A D

6	on a B w	the speed $2 \mathrm{ms^{-1}}$. After A collides with B the speed of A is reduced to $0.6 \mathrm{ms^{-1}}$, stages and A is a smooth horizontal plane. The distance between A and A is reduced to A is reduced to A is reduced to A is same direction.	ectly towards
	(a)	Show that the speed of B after the collision is $1.05 \mathrm{ms^{-1}}$.	[2]
		er the collision between A and B , B moves directly towards C . Particle B now collect this collision, the two particles coalesce and have a combined speed of $0.5 \mathrm{ms^{-1}}$.	lides with C .
	(b)	Find <i>m</i> .	[2]
			,
			HEAD
			P

	ed particle.					[5
••••••						
					•••••	
••••••	•••••		•••••		••••••	
••••••	•••••		•••••		•••••	
••••••						
			•••••		•••••	
•••••						
			•••••		•••••	
•••••						
•••••			•••••		•••••	
					•••••	
••••••	•••••	•••••••••••	•••••	•••••••••••	•••••	AHEA

7	A particle P travels in a straight line, starting at rest from a point O . The acceleration of P at time t s
	after leaving O is denoted by $a \mathrm{m}\mathrm{s}^{-2}$, where

$$a = 0.3t^{\frac{1}{2}}$$
 for $0 \le t \le 4$,
 $a = -kt^{-\frac{3}{2}}$ for $4 < t \le T$,

where k and T are constants.

a)	Find the velocity of P at $t = 4$.
))	It is given that there is no change in the velocity of P at $t = 4$ and that the velocity of P at $t = 1$ is $0.3 \mathrm{ms^{-1}}$.
	Show that $k = 2.6$ and find an expression, in terms of t , for the velocity of P for $4 \le t \le T$. [4]
	AHEA

(c)	Given that P comes to instantaneous rest at $t = T$, find the exact value of T .	[2]
		•••••
		•••••
(d)	Find the total distance travelled between $t = 0$ and $t = T$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	AH	AD

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge.