

Cambridge Assessment International Education

Cambridge International Advanced Level

09/32 n 2019 nutes
1

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers,

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signs
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signifigures.
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signifigures.
(ii)	figures.

2 The sequence of values given by the iterative formula

$$x_{n+1} = \frac{2x_n^6 + 12x_n}{3x_n^5 + 8},$$

with initial value $x_1 = 2$, converges to α .

(i)	Use the formula to calculate α correct to 4 decimal places. Give the result of each iteration to 6 decimal places. [3]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α . [2]
(ii)	State an equation satisfied by α and hence find the exact value of α .
(ii)	State an equation satisfied by α and hence find the exact value of α .
(ii)	State an equation satisfied by α and hence find the exact value of α .

e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.
e solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$.

-1	$x^{-\frac{3}{2}} \ln x \mathrm{d}x = 2$				
		•••••			
•••••	•••••				
	•••••	••••••	••••••	•••••	
			•••••	•••••	

dy 1	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos x \sqrt{(\cos 2x)}}.$	
 	•••••

6	The	variables	x and	y satisfy	the	differential	equation
---	-----	-----------	-------	-----------	-----	--------------	----------

dy	_	$L_{\rm v}^3$	3	x
dr	_	Ky	e	•

lifferential equation, obtaining an expression for y in terms of x .	[7]
	ΔEA

 ••••••
 ••••••
••••••
 •••••
••••••
EA
 PHEAT

	$(1+i)z^2 - (4+3i)z + 5 + i = 0.$
[6	Give your answers in the form $x + iy$, where x and y are real.

(b) The complex number u is given by

$$u = -1 - i$$
.

On a sketch of an Argand diagram show the point representing u. Shade the region whose points represent complex numbers satisfying the inequalities |z| < |z - 2i| and $\frac{1}{4}\pi < \arg(z - u) < \frac{1}{2}\pi$. [4]

8	Let $f(x) =$	$12 + 12x - 4x^2$
o	Let $I(x) =$	$\frac{12+12x-4x}{(2+x)(3-2x)}$

•	•••••
•	 •••••
•	
•	 •••••
•	 •••••
•	 •••••
•	 •••••
•	 ••••••
•	 ••••••

••••••	••••••	••••••	••••••	••••••	•••••••	••••••	••••••	••••••
				•••••				
	•••••	•••••	••••••	••••••	••••••	•••••	••••••	
•••••	••••••	••••••	•••••••	••••••	•	••••••	••••••	•
•••••								
				•••••				
•••••	•••••	•••••	•••••	•••••		•••••	••••••	
				•••••				
••••••	••••••	••••••	••••••	••••••	•••••••	••••••	••••••	••••••
•••••		•••••			•••••			
•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	
•••••								
•••••		•••••						
•••••	•••••	•••••	••••••	••••••	••••••	•••••	••••••	
••••••	••••••	••••••	••••••	••••••		•••••••	••••••	
				•••••				

Find the acute angle between the planes.	[
	ΛE

••••
 •••••
 •••••
 •••••
•••••
•••••
••••
 •••••
 HE

10

The diagram shows the curve $y = \sin^3 x \sqrt{(\cos x)}$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(i)	Using the substitution $u = \cos x$, find by integration the exact area of the shaded region bounded by the curve and the <i>x</i> -axis. [6]
	AHEAD

(ii)	Showing all your working, find the x -coordinate of M , giving your answer correct to 3 decimal places. [6]
	AHEAD

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	r(s)
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
AHE	AD

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.