

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATIC	cs		9709/12
Paper 1 Pure N	Mathematics 1	AHE	February/March 2021 1 hour 50 minutes
	er on the question paper. List of formulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

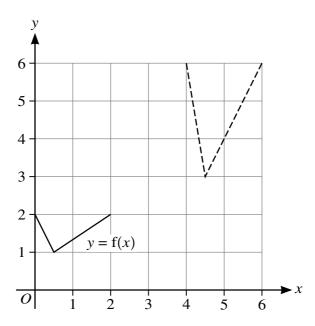
INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

(a)	Find the first three terms in the expansion, in ascending powers of x , of $(1 + x)^5$.	[1]
(b)	Find the first three terms in the expansion, in ascending powers of x , of $(1-2x)^6$.	[2]
		••••••
		••••••
(c)	Hence find the coefficient of x^2 in the expansion of $(1+x)^5(1-2x)^6$.	[2]
		••••••
		WEA
		A

	4	
2	By using a suitable substitution, solve the equation	
	$(2x-3)^2 - \frac{4}{(2x-3)^2} - 3 = 0.$	[4]
		••••
		•••••
		••••
		••••
		•••••
		•••••



	••••••	,			
••••••	•••••		·····		••••••
			•••••	•••••	
			•••••	•••••	
••••••	•••••		·····		•••••
			•••••	•••••	
•••••	•••••				

F	Find the set of values of k for which the line and curve have two distinct points of intersection.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

5

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

(a)	Describe fully the two single transformations of $y = f(x)$ that have been combined to give the resulting transformation. [4]
(b)	State in terms of y , f and x , the equation of the graph shown with broken lines. [2]
	AHEAD

Fin	d the rate of incr	rease at A of the	e x-coordinate	e of the point.	
••••		••••••		•••••	
••••					 •••••
•••••		••••••	•••••	•••••	 •••••
••••	•••••	••••••	•••••	•••••	
•••••			•••••		
••••		•••••	•••••		
••••					
		••••••			
					 ,
		•••••			

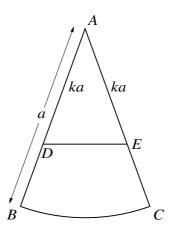
							••••••					
				•••••								
			••••••	•••••	• • • • • • • • •							
	•••••					••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •										
	•••••	•••••		•••••					• • • • • • • • • • • • • • • • • • • •		•••••	•••••
••••••	••••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••
••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••											

f:
$$x \mapsto x^2 + 2x + 3$$
 for $x \le -1$,
g: $x \mapsto 2x + 1$ for $x \ge -1$.

) l	Express $f(x)$ in the form $(x + a)^2 + b$ and state the range of f.
•	
•	
	DHE

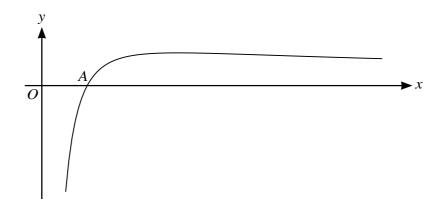
••	•••••				
••		•••••	•••••		•••••••
••					
••				•••••	•••••
••		•••••	•••••	•••••	•••••
••	•••••	•••••	••••••	•••••	•••••••
 S	Solve the equation $gf(x) =$	13.			
 S	Solve the equation $gf(x) =$	13.			
 S	Solve the equation $gf(x) =$	13.			
 S	Solve the equation $gf(x) =$	13.			
 S	Solve the equation $gf(x) =$	13.			
 S	Solve the equation $gf(x) =$	13.			
 	Solve the equation $gf(x) =$	13.			
 SS	Solve the equation $gf(x) =$				
 S					
 S					
 SS 					
 S					

F	Find an equation of the circle.	[:
••		•••••
•		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
•		
•		
		•••••
•		•••••
•		•••••
		•••••
		•••••
		πE


		••••••
a >		
(b)	Find an equation of the tangent to the circle at B .	[2]
		•••••
		MEAD

9	The	first	term of a progression is $\cos \theta$, where $0 < \theta < \frac{1}{2}\pi$.
	(a)	For	the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.
			Show that the second term is $\cos \theta \sin^2 \theta$. [3]
		(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 significant figures.
			- FA

(b)	For the case where the progression is arithmetic, the first two terms are again $\cos \theta$ and $\cos \theta \sin^2 \theta$ respectively.
	Find the 85th term when $\theta = \frac{1}{3}\pi$. [4]
	AHEAD


The diagram shows a sector ABC which is part of a circle of radius a. The points D and E lie on AB and AC respectively and are such that AD = AE = ka, where k < 1. The line DE divides the sector into two regions which are equal in area.

(a)	For the case where angle $BAC = \frac{1}{6}\pi$ radians, find k correct to 4 significant figures. [5]
	HEAD

(b)	For the general case in which angle $BAC = \theta$ radians, where $0 < \theta < \frac{1}{2}\pi$, it is given that $\frac{\theta}{\sin \theta} > 1$	
	Find the set of possible values of k . [3]]
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
	AHEA	D

11

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the *x*-axis at the point *A*.

(a)	Find the x -coordinate of A .	[2]
(b)	Find the equation of the tangent to the curve at A .	[4]
		AHEAD
		AB

(c)	Find the <i>x</i> -coordinate of the maximum point of the curve.	[2]
(d)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the line $x = 9$.	[4]
		, FAD
		AME

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.